压载水过滤器滤筒支座焊接顺序优化分析

曲瑞波,郭雨菲,徐少可

中国船舶重工集团公司第七二五研究所 河南洛阳 471000

摘要:建立滤筒支座焊接过程热应力分析的有限元模型,依据焊接参数,运用ANSYS APDL命令流对压载水 过滤器滤筒支座的焊接过程进行模拟计算。通过对6种焊接方案的热应力及变形的数值分析,选择产生最小变 形滤筒支座焊接方案进行生产加工,结果表明:仿真计算结论具有一定指导意义。

关键词:压载水过滤器;滤筒支座;焊接变形;仿真计算

1 序言

国际海事组织 (IMO) 颁布的《国际船舶压载 水及沉积物控制和管理公约》于2017年9月8日正式 生效, 2019年1月22日起在我国正式生效, 压载水处 理系统作为海洋环保领域的重要设备已经得到了大 批量安装。自动反冲洗过滤器作为大多数压载水处 理系统前处理的关键设备,影响着压载水处理系统 性能正常发挥^[1]。压载水过滤器依据工作原理主要 分为直接反冲洗式过滤器和吸吮扫描式反冲洗过滤 器两种,本文所述的自动反冲洗过滤器为吸吮扫描 式自动反冲洗过滤器[2]。徐莉萍等[3]对船舶压载水过 滤器内部流场进行了数值模拟,研究结果表明,仿 真技术可以为过滤器内部结构设计提供理论指导。 王全柱等^[4]对影响船舶压载水过滤器运行时长的要 素进行了分析研究,提出过滤器结构是制约过滤器 寿命的关键因素,因此研究如何有效提高压载水过 滤器的生产制造效率也很重要。吸吮扫描式过滤器 中滤筒支座结构一般是通过先焊接成形留出余量再 进行机械加工, 故对滤筒支座结构焊接顺序和焊接 变形进行研究,对于过滤器生产制造效率的提高是 很有必要的。

基于有限元理论的仿真计算方法主要有两种: 一种是热弹塑性法,另一种是基于固有应变的弹 性有限元法,二者都能够一定程度上计算预测构件 的焊接变形^[5-7]。梁伟等^[8]研究了薄板的焊接结构变 形,改进了固有变形法,计算结论和弹塑性法结论 基本一致。MALIK等^[9]研究了焊接顺序的差异在焊 接过程中是如何影响其结构变形的;LEE等^[10]研究 了焊接残余应力随壳体结构尺寸差异出现的变化, 归纳出板材厚度对于薄壁壳体焊接残余应力计算时 产生的不同结果。WARMEFJORD等^[11]通过试验表 明了零件定位偏差对焊后尺寸的改变,同时指出最 后的装配偏差与零件、夹具精准度及由焊接引起的 变形有密切关系。RENZI等^[12]分别用热弹塑性有限 元法和固有应变法研究了零件尺寸公差及在热输入 存在波动的情况下铝板的焊接角变形情况,并比较 了两种方法在计算精度和计算时间方面的优劣性。 本文运用ANSYS软件,利用热弹塑性方法对过滤器 滤筒支座的6种焊接顺序进行了模拟分析,通过对比 不同计算结果,分析得出滤筒支座的最优焊接顺序, 为压载水过滤器生产制造提供有价值的理论依据。

2 滤筒支座物理模型的建立

2.1 有限元模型的建立

滤筒支座由3个零件组合焊接而成,焊缝形式 为角焊缝。零件1为环形板,材质为Q355R钢,尺寸 为(ϕ 888~ ϕ 677)mm×30mm。零件2为圆柱形, 材质为S31603钢,尺寸为(ϕ 673~ ϕ 645)mm× 60mm。零件3为环形板,材质为S31603钢,尺寸为 (ϕ 643~ ϕ 570)mm×23mm。滤筒支座组焊件的 三维结构如图1所示。

由于实体模型尺寸过大,有限元分析计算时网 格太多,比较耗时,所以有限元模拟时采用1/4轴对 称模型进行计算,如图2所示。

万方数据

图1 滤筒支座组焊件

图2 有限元模型

2.2 单元选择和网格划分

为保证焊接强度,设计零件焊接部位坡口形 式为单边V形。计算过程中材料假定为各向同性, 焊接速度固定不变,不考虑焊缝熔池内部的化学反 应及搅拌、对流。先选用热单元Solid70和板单元 Plane55进行滤筒支座焊接温度场的计算,完毕后再 选用单元Solid185进行结构场的分析模拟。仿真计 算是通过有限元软件ANSYS,基于焊接热物理方 程,采用热-力间接耦合算法对焊接结构的变形进行 研究。首先计算焊接过程中的温度场分布,其次将 焊接加热和冷却过程的温度场读入,作为热载荷施 加到模型上进行焊接结构的热应力计算^[13, 14]。

综合权衡计算量和计算结果的准确性,滤筒支 座焊接结构有限元模型的网格尺寸选择为5mm。 对其结构进行分区划分网格,最终总的节点个数为 26574*R*,单元个数为21522*R*。滤筒支座模型网格划 分如图3所示。

图3 网格划分

2.3 材料特性

材料的热温度和力学性能都是与材料温度相关 联的函数,参数设定直接影响计算结果的准确性。 焊接过程中温度的突变会产生严重的材料非线性, ANSYS计算过程中材料物理参数的获得方法是通过 已有的几个定温度点的对应数值,由线性插值法计 算得到^[15]。模拟采用的材料有两种,分别为Q355R 钢和S31603钢,性能随温度的变化见表1和表2。

表1 Q345R钢热物理及力学性能

温度/℃	屈服强度 /MPa	弹性模量 /GPa	泊松比	线膨胀系数	比热/J·(kg·℃)⁻¹	导热系数W·(m·K) ⁻¹	对流系数W·(m ² ·K) ⁻¹
25	345	206	0.28	1.30e-5	460	44	
250	270	187		1.32e-5	480	39	
500	220	150		1.39e-5	530	33	22
750	160	120		1.48e-5	675	30	25
1000	75	70		1.34e-5	670	26	
1500	20	10		1.33e-5	700	20	

温度 /℃	屈服强度 /MPa	弹性模量 /GPa	泊松比	线膨胀系数	比热/J·(kg·℃) ⁻¹	导热系数W·(m·K) ⁻¹	对流系数₩·(m ² ·K) ⁻¹	密度/kg·m ⁻³
20	270	198		1.57e-5	500	16		
100	278	194		1.66e-5	544	16.3		
300	196	181		1.72e-5	606	18.8		
500	176	166	0.3	1.79e-5	629	21.8	23	7930
800	176	20		1.89e-5	843	26.4		
1000	29	5		1.95e-5	680	21		
1500	20	0.4		2.11e-5	778	22.4		

表2 S31603钢热物理及力学性能

2.4 焊接参数选取和热源模型的选择

滤筒支座焊接结构采用GTAW手工氩弧焊, 焊丝材料为ER309LMo, φ3.2mm,焊接电流为 180A,电弧电压为20V,焊接速度为2mm/s,焊接 热效率为0.75,电弧有效加热半径为6mm,室温设 定为20℃。

焊接时,电弧热源需要通过一定的作用面积才 能够把热量传递给工件,这个作用区域也称为加热 斑点。加热斑点上热量分布是不均匀的,中心热量 多而边缘相对少。

热源模型采用高斯模型。其中,电弧热功率为

式中 U——电弧电压 (V);

I——焊接电流(A);

k——焊接热效率。

加热斑点中心最大热流密度为

$$\rho = 3Q/(\pi r^2)$$

式中 r——加热半径 (mm)。

3 不同焊接顺序下变形模拟计算

3.1 滤筒支座焊接顺序的确定

对滤筒支座结构件的4条焊缝进行编号,如图4 所示。依据焊接次序的不同能够得到6种焊接方案, 具体见表3。

图4 焊缝编号

注:1~4为焊缝编号。

方案编号	方案1	方案2	方案3	方案4	方案5	方案6
焊接顺序	1234	1243	1324	1342	1423	1432

3.2 焊接结构温度场

温度场计算完毕后,为下一步预测焊接结构的 残余应力与变形打下基础。热源经过时,焊件温度 快速升高,直至最大值;热源经过后,焊件温度则 迅速下降,并且温度下降速度逐渐放缓,最终趋于 环境温度。滤筒支座组件焊接过程中的温度场如图5 所示。

35.5303 36.0302 36.5302 37.0301 37.5301 35.7802 36.2802 36.7801 37.2801 37.7801 **图5 滤筒支座焊接结构温度场**

3.3 应力场分析

随着滤筒支座组件焊接过程的不断推进,能 够发现前一道焊缝的焊接残余应力集中区域缓慢缩 小,其应力峰值也缓慢降低,当焊接加工结束后焊 接的焊缝周围属于应力峰值区域主要集聚区。焊接 过程中热量主要集中在焊缝区域,随着焊条和母材 的不断熔化,焊接残余应力主要由材料的膨胀造 成。计算结论显示,焊接顺序对焊接应力的影响很 小,6种焊接方案得到的应力分布近似相同,等效应 力集中在焊缝区域,最高值为1040MPa,已经达到 材料的屈服极限,如图6所示。

0.119E+08 0.241E+09 0.471E+09 0.700E+09 0.929E+09 0.127E+09 0.356E+09 0.585E+09 0.815E+09 0.104E+10

图6 支座焊接结构应力场

3.4 焊接变形分析

对滤筒支座进行焊接残余应力模拟分析,发 现得到的数据结果基本一致,不同的焊接方案都有 明显的焊接变形,但是各方案中焊接变形差异并不 大。6种方案的焊接变形见表4,从表中可以发现, 方案3中焊接顺序的变形相对较小,综合残余应力可 认为方案3中构件的焊接质量最好。据此计算数据, 设定滤筒支座零件竖直方向上的机加工余量预留为 3mm,在后续过滤器生产制造过程中,针对零件2 和零件3的焊后加工都能顺利完成,因此可认为有效 验证了模拟计算结果,对于过滤器滤筒支座的焊接 和机加工具有指导意义,有助于提高过滤器生产效 率和质量。

表4 不同方案的最大焊接变形量 (mm)

方案编号	方案1	方案2	方案3	方案4	方案5	方案6
最大变形量	0.77	0.807	0.73	0.756	0.794	0.763

4 结束语

1) 基于ANSYS采用间接法所进行的滤筒支座 焊接结构过程模拟分析是有效的,计算结果表明, 在熔合区焊接残余应力达最大值,焊根处残余应力 较小,在热影响区残余应力变化较大。

2) 计算结果表明,基于ANSYS进行的过滤器 滤筒支座焊接结构模拟分析能够为过滤器其他类似 结构加工余量的预留提供理论数据支撑,有助于压 载水过滤器生产效率和产品质量的提升。

参考文献:

- 朱宸,张正.浅析船舶压载水处理技术及处理系统选型[J].中国水运,2020(11):106-108.
- [2] 宋金金,徐凤麒,李樱,等.应用于船舶压载水处
 理系统的自清洗过滤器技术[J].船舶工程,2018
 (12):10-13.
- [3] 徐莉萍,马志勇,南晓青.压载水过滤器流场压降模 拟分析[J].流体机械,2016,44 (9):53-56.
- [4] 王全柱,李洪波,王文茂.影响船用压载水过滤器运 行寿命的因素[J].过滤与分离,2017 (1): 18-22.
- [5] UEDA Y, MURAKAWA H, MA N X.Welding deformation and residual stress prevention[M]. Holland: ELSEVIER, 2012.
- [6] MA N, WANG J, OKUMOTO Y.Out-of-plane welding distortion prediction and mitigation in stiffened welded structures[J].International Journal

ofAdvanced Manufacturing and Engineering, 2016, 84 (5) : 1371-1389.

- [7] 李敏, 胡玲玲.U形坡口焊条电弧焊ANSYS三维数值 模拟研究[J].金属加工(热加工), 2020(8): 57-62.
- [8] 梁伟,马峰,张渝,等.薄板焊接变形高精度预测方法的研究[J].船舶力学,2017 (4):437-442.
- [9] MALIK A M, QURESHI E M, DAR N U, et al. Analysis of circumferentially arc welded thin-walled cylinders to investigate the residual stress fields[J]. Thin-Walled Structures, 2008, 46 (12) : 1391-1401.
- [10] LEE C H, CHANG K H.Three-dimensional finite element simulation of residual stresses in circumferential welds of steel pipe including pipe diameter effects[J].Materials Science and Engineering, 2008, 487 (1) : 210-218.
- [11] WARMEFJORD K, SODERBERG R, ERICSSONM, et al.Welding of non-nominal geometries-physical tests[J].Procedia CIRP, 2016, 43: 136-141.
- [12] RENZI C, PANARI D, LEALI F.Predicting tolerance on the welding distortion in a thin aluminum welded T-joint[J].The International Journal of Advanced Manufacturing Technology, 2018, 96 (5/8): 2479-2494.
- [13] 黄尊月,罗震,敖三三,等.焊接顺序对某飞行器叉形结构焊接变形的影响[J].焊接学报,2016
 (8):31-35.
- [14] 吴家洲,张华,李玉龙,等.洛伦兹力计算及其对GMAW焊接模拟的影响[J].焊接学报,2016
 (10): 89-92.
- [15] 李学明.焊接顺序对H型钢变形影响的仿真模拟研究[J].铁道建筑技术,2018 (12): 34-36.

MW 20210625