钛-钢复合板焊接问题浅析

山东电建二公司 (济南 250100) 邓同喜

【摘要】 主要对新兴烟囱钢内筒材料钛-钢复合板焊接过程中,容易出现的问题及诱发因素进行筒要分析,同时希望通过对该问题的阐述,能够帮助大家在现场施工中,注意并采取相应对策,防止类似问题的发生。

近年来,我国电力建设迅猛发展,而且朝着建设大装机容量的超临界及超超临界机组的方向发展,作为环保重点监控对象的火力发电厂在建项目的审批格外严格,特别是在2005年国家环保总局的"环保风暴"中停建或缓建电站项目中,有很重要的一条就是因为环保措施不达标而被叫停。因此,现在很多在建电站项目,大家普遍提高了对环境保护的认识,加大了对环保措施的投入。而电厂烟气湿法脱硫系统以其独特高效的脱硫方式得到广泛推广。

钛有"第三金属"之称,有高的比强度,良好的塑 韧性和耐腐蚀性,已被广泛应用在航空航天、造船及化 学工业中。在安装烟气脱硫装置的过程中,钛材以其优良的耐腐蚀性使钛-钢复合板成为烟囱内衬钢筒的首选材料。但是由于材料本身及焊接的特殊性,以及钛-钢复合板焊接属于比较新的施工领域,施工措施还不成熟、不完善,致使现场焊接施工中经常会出现质量问题。

一、焊接方法的选择

由于钛-钢复合板基层钢材质为 Q235 钢, 焊接工艺已经相当成熟稳定, 因此可用多种焊接方法, 焊条电弧焊、CO₂ 气体保护焊以及焊条电弧焊/埋弧焊。但考虑到现场实际施工问题, 焊条电弧焊/搜弧焊产法, 需要焊条电弧焊/打底, 增加工序, 且由于埋弧焊焊接参数较大容易击穿打底层, 焊接质量难以保证, 而且热影响区较大, 会对附近复合区钛板造成一定负面影响; CO₂ 气体保护焊为半自动化操作, 而且减少了中间环节, 大大提高了焊接施工效率, 有利于保证施工进度和焊接质量。

但由于 CO₂ 气体保护焊产生的飞溅较大,因此建议使用 Ar+CO₂ 气体的混合气体。

钛-钢复合板焊接采用钨极氩弧焊,施工的关键点在于钛板的焊接。一般现场为钛填条搭接焊,钛填条厚度为 1.5mm,钛板厚度为 1.2mm。由于钛元素在元素周期表中属于过渡元素,具有一定的化学活性。光洁的钛板在常温下就能与空气中的氧发生反应,并且随温度的升高活性增加,达到 250℃时开始吸氢,400℃时开始吸氧,600℃时开始吸收氮元素,与氢、氧、氮元素发生反应,生成各种钛化合物。或溶解于钛晶粒组织中,形成间隙固溶体,改变金属晶格,降低钛板的力学性能和使用性能。为此,在钛板焊接的过程中,必须做好钛板、钛填条、钛焊丝的清理和焊接过程中的防护工作。

二、焊接参数选择

焊接参数选择也会对钛焊缝及热影响区组织产生很大影响。由于钛金属具有熔点高、热容量大和导热性差等特性,如果选择焊接参数较大,热输人量多,会造成高温热影响区较宽,高温停留时间较长,致使焊缝和热影响区晶粒粗大,甚至出现钛板与基层钢互溶。两者互溶所产生的中间化合物是脆性组织,破坏和改变了原力金属晶格,是焊缝中的应力集中点和薄弱环节,增加增度,使钛钢复合板焊缝的塑韧性以及屈服强度、抗拉强度,使钛钢复合板焊缝的力学性能急剧下降。焊缝及热影响区在冷却过程中转变为针状组织,导致焊接接头塑性下降。热输人量过大,如果防护措施不当,焊缝及热影响区暴露于空气中就会导致氧化变色,降低或无法满足使用要求;反之电流过小,则无法保证焊缝熔合性,使热影响区淬硬,不利于氢的逸出,增大了冷裂倾向,

全基加工 热加工

焊接与切割 2008年第6期

而且施工进度比较慢。因此, 焊接电流的选择必须合 理、实用。现场施工推荐使用电流为 110~150A, 氩气 流量为 10~14L/min。

在钛填条的焊接过程中, 焊缝及热影响区的氧化变 色及裂纹的产生 (特别是冬季施工) 是经常出现的问 题。氧化变色主要是钛表面温度过高, 钛元素活性增 加,与空气中的氧在接触过程中发生反应。由于氧化程 度不同,表现出的表面颜色不同。不同的颜色也意味着 焊件是否能达到使用要求,是否需要处理。焊缝及热影 响区颜色主要判别如下表所示。

焊缝	及恐	影叫	则区	颜色	判	别	表

焊缝及热影响 区表面颜色	氩气保 护情况	合格与否判断	处理方法				
银白色	良好	合格	不需处理				
金黄色(致密)	尚好	合格	可不处理				
蓝色	稍差	只可用于非 重要部位	去除蓝色				
紫色 较差		只可用于常 用容器	去除紫色,如去不 掉应返修				
灰色	差	不合格	返修				
暗灰色	差	不合格	返修				
灰白色	很差	不合格	返修				
黄色粉状物	极差	不合格	返修				

在钛金属的焊接过程中, 必须注意焊缝及热影响区 的保护,可采用拖罩形成的气室进行保护,或采用大喷 嘴氩弧焊枪,扩大周围保护区域。

三、裂纹的产生及应对措施

裂纹是钛板焊接中经常出现的缺陷。钛焊缝裂纹属 于冷裂纹、主要是由焊缝中氢引起的。氢的来源主要有 板材及焊丝中的水分和油污, 环境湿度是焊缝增氢的主 要原因。

焊接时在高温作用下,大量的氢溶解在熔池中,在 焊缝的冷却和凝固过程中,由于溶解度的迅速降低、氢 极易逸出。如果焊缝冷却速度过快,氢来不及逸出保留 在焊缝中,将使焊缝中的氢处于过饱和状态,因而氢要 极力进行扩散,并促使这一区域进一步脆化。

如果这个部位存在缺口效应, 且氢的浓度足够高

时,就可能产生裂纹。特别是在冬季施工中、环境溢 低,水蒸气附着在钛板上,为焊缝增氢创造了条件。由 于钛板太薄 (1.2mm), 钢板比较"吃温", 温度升高较 慢,相应的钛复合层焊缝冷却速度过快,在冷却过程 中, 焊缝中的残余氢来不及逸出, 在焊缝中以过饱和的 形式存在, 最终导致裂纹的出现。

因此, 在钛钢复合板的焊接过程中, 要认真清理母 材、焊丝的表面,保持环境温度不得低于5℃。冬季施 工时, 应用火焰预热基层钢面, 一是为去除焊缝周围的 水分; 二是提高焊件温度, 降低焊缝冷却速度。

四、钛钢复合板焊接中应注意的问题

- (1) 钨极氩弧焊中出现钨极碰到焊缝金属即触钨的 情况, 应立即停止焊接作业, 去除污染源, 更换钨极后 再进行作业。
- (2) 焊接作业时焊缝应尽可能的长, 中间出现停 焊, 重新进行焊接时, 焊缝应重叠 10mm 左右。
- (3) 焊接时不得随意起弧、焊接完进行自检、发现 问题及时处理。焊后应仔细清理焊件表面的焊瘤、焊 渣、飞溅物以及其他污物,必要时应对焊缝进行局部修 整。
- (4) 处理焊缝缺陷时,应先用砂轮修磨清理,再用 白布蘸丙酮进行擦洗清理,清理完毕后再进行返修处 理。同一部位返修次数不宜超过两次。如超过两次,返 修前应经单位技术负责人批准。
- (5) 焊缝检验。焊缝成形应均匀、致密、光滑过 渡,不得有裂纹、气孔、夹钨、未熔合、氧化(主要看 焊缝颜色变化) 超标咬边及弧坑等缺陷的出现, 钛焊缝 表面不允许存在明显的划伤。
- (6) 如需在钢基层焊接吊耳或进行加固时、焊接电 流要小,并且每焊完一道要间隔一段时间再进行下一道 的焊接, 防止出现由于热输入量过大, 导致钛复合层受 热氧化变色。
- (7) 冬季施工应注意保持环境温度,由于钛金属比 较脆,如果温度过低,冷却速度快,很容易出现裂纹。 应及时提高环境温度, 对焊缝区周围 80mm 范围内适当 预热,温度不低于15℃,从钢基层预热。
- (8) 焊缝严禁只熔化母材, 而不添加焊丝, 导致焊 缝强度较低,冷却时开裂。MW

(20071228)

60 2008年第6期 焊接与切割

金属加工 热加工

www machinist.com.cn