《金属加工(热加工)》2012年目次总索引

题 目	页·期	题目	页·期	题目	页·斯
热处理/锻压/铸造专	刊	高频论坛在芜湖成功召升	F2·11	——第二届海峡两岸热处理	学术研讨会
		立足热处理地区特色 提升	 	在京召开	8·21
机械工人		——第十八届华东六省-	一市热处理年会	航空企业相约一堂 共谋热处	理技术新发展
难忘恩师——江教授	····· 4·7	在莱芜召开	6·17	——2012年航空热处理新技	术研讨会暨第四届
有志创新 醉心育才		加强交流 联合攻关 推动	热处理技术水平快速提高	航空热处理车间主任/厂长会	:纪实 ······· 11·23
——记高级工程师汤少凌 汤立群		——华北地区第十九届抗	处理技术交流会	企业专	÷
普通女工的风采		在天津成功召开	7-17		V)
我俩的人门师父——袁东洲		把控铸件质量终端 注重清	青理设备应用	零排放 打造铸造行业绿洲	*
勇攀铸造技术高峰的人	·····4·15	——铸件清理设备与应用]技术交流会报道···6·19	——访重庆长江造型材料(,, , ,
我的师傅于希顺	·····4·17	中国热协第七次会员代表力	会	有限公司副总经理 吴长松	14:11
追求卓越无止境		暨2012年厂长经理会召开		企业风?	K
——记热处理高级技师 许东	·····4·19	推进装备智能化 提升企业		创新发展 稳中求进 挑战转型	发展机遇期… 16:11
我国感应加热领域的泰斗沈庆通	·····4·21	——第十三届中国国际镇		当前金属成形机床行业市场形	
来自民营热处理企业的专家——贺柱	···· VIII-23	暨2012中国锻造企业厂长			
百年铭记		第七届中国国际金属成形会		走进企	
	6.1	华东轴承热处理技术交流会	.,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	先进的感应热处理技术在哪里	18·11
纪念A·E·斯鲁霍茨基诞辰百年 ············· 遥远的思念 忆恩师A·E·斯鲁霍茨基教授		——第12届洛阳·南通华		本刊专i	方
		交流会报道		服务真空炉市场 易利注重团	队作战
感应加热技术的应用		好富顿:卓越品质,来自为		——访北京易利工业炉制造	有限公司
弥足珍贵的技术支持······		深刻理解		总经理高文栋先生	
纪念A·E·斯鲁霍茨基教授				以设计牵动汽车轻量化技术的	
骄人的成绩缘于无私地援助	14-1	研究应用寻融合 协同创新		——访中国汽车工程学会产	
国际交流		——2012中国铸造活动用 Raidt # 1410 R R R R R R R		运行总监王智文	
全俄沃洛格金高频电流科学研究所的		聚义铸造材料发展 强化节		打造航母级品牌展会 给力中	
昨天与今天	23-11	——2012铸造材料分会年		访中国铸造协会常务副	
		铸造材料专题会报道		兼秘书长张立波	
展会报道		特别打	B 道	德润宝专业服务金属加 工	
第十二届中国金属冶金展参展记	6.9	2012中国先进冲钣技术与装	备研讨会	访上海德润宝特种润滑	初有限公司
盛装旗舰展舞台 浓缩铸造业全景		圆满落幕	10-13	总经理赵新元	
——2012中国国际铸造博览会报道	3.11	逆行业形势之颓势 掀技术	交流之热潮	以专业化模式铺就冲压自动化	
热议转型与创新 共举铸造业发展未来		——记2012年先进节能热		——访广州市汉达机械有限	
——第十届中国铸造协会年会报道		与装备研讨会		总经理张运清	
2012中国国际铸造博览会精品回放	·····8·11	技术交流会撷英		以高端的技术引领设备的发展	
走进金属成形展会现场 领略锻压装备市		EMA: 感应技术 中国呈现		——访中航工程集成设备有	
——2012中国国际金属成形展览会报道	11-19	——EMA先进感应热处理		副总经理 刘晓评	
会议报道		及应用推介会报道		解读:汽车零部件行业现状、	
多方交流共促高频行业发展		易普森 分享先进的热处理	!技术7-21	——访中国汽车工业协会零	部件部主任 12·17
——高频行业第十九次工作会议暨第四	次全国	相聚京城好时节 共促两岸	执外理交流与发展	畅谈汽车行业装备的采购思路	

題目页	期 题目	页·期	題 目	页·期
——访中国第一汽车集团公司采购部	快速气体渗氮工艺:高温渗氮和稀土	:催渗 9:7	研究与应用	
高级工程师 14-	17 节能省时:感应加热淬火工艺	11:7	高压釜反应筒大型铝法兰制造工艺	32·1
为热处理行业企业省金节能	金属零件的喷丸强化技术	13.7	X12CrMoWVNbN10-1-1钢超超临界转子	
——访保定市金能换热设备有限公司	先进绿色:激光冲击表面改性技术…	15.7	锻后热处理工艺	34.1
总经理宋重福先生 16	19 轴承热处理用典型设备及工艺分享…	22:13	42CrMo材料大型芯轴调质热处理工艺研究	
行业视点	工程机械		25MW电动机转子的热处理工艺分析	
自动冲压生产线的发展趋势	—	14.21	大型支承辊的锻造工艺	41·1
日9017年1月9日及成邑第一一一一	齿形感应淬火自动跟踪装置		重型卧式车床尾座体的铸造	
行业观察	压路机BYD3313箱体铸造工艺		压铸模具设计与压铸工艺	21-3
航空热处理发展的思考 17-	23 P&H107电铲辊挖掘机辊道辊轮热处		合理选择浇口位置 改善压铸件质量	
专家视点	控制煤矿挖掘式装载机薄壁套	<u> </u>	提高Cr12MoV钢制冷冲模使用寿命的	
	热处理变形工艺	20-21	强韧化处理	27-3
加快热处理行业转型升级 为满足高端装备			反变形模锻法	
制造奠定工艺基础		XXXX 1 22 21	卷圆成形级进模的设计	
大型锻件制造核心技术的进展19	初進义坦		铸造铝合金汽车轮毂低压模具设计	35.3
低压真空渗碳的应用与展望(地铁车辆机侧滚孔杆螺栓的断裂原因	初探… 24:21	拉延筋布置对某汽车零件拉深成形质量的影	响…14·5
工模具真空淬火介质10	73 动车51CrV4板簧热处理工艺试验 …	······ 26·21	商务车后桥半轴感应加热淬火工艺	18·5
行业聚焦	高速动车组设备舱支架结构仿真分析	28:21	壳型背丸工艺生产康明斯排气管铸件	21.5
感应电炉铸造行业应用调查结果分析	电力机车牵引从动齿轮裂纹分析	30.21	感应淬火用钢及其淬火硬度和淬硬层设计	·····24·5
暨应用论坛 15	15 航空航天		典型载货汽车前轴模锻设计	29-5
从热处理论谈工程机械 10-	21	<u>ئىرى</u>	KR6480淬火介质在曲轴调质热处理中的原	立用 32·5
↔ 411.2 0.4−	成功研制1.6万吨电动压力机 提升網		外冷铁在汽车球墨铸铁件铸造	
产业论坛	報件装备水平		工艺设计中的应用	35.5
先进冲压钣金工艺与装备论坛 11-	and the desired the first and the second sec		40Cr钢管开裂的原因分析	38-5
寻找汽车生产中先进的锻压设备 16			P003618主动轮铸造工艺 ·····	24.7
行业论坛	零件表面离子注入锈蚀防护方案		齿形件精冲成形工艺研究	
技术创新是热加工发展的动力之源2.	燃气涡轮叶片气相渗铝中非渗部位防 2·1 不同意物工类型24.00人人力类数数		采棉机凸轮铸造工艺设计与质量控制	28·7
铸锻件制造技术向快速高精、数控绿色发展…2.	~ 不同重熔工艺对K418合金力学性能的 ◇1	列於啊 34.73	摩托车齿轮的气体碳氮共渗工艺	30-7
调整转型 创新升级 实现向高端装备华丽转身…2.	₹ 题综述		花键齿轮轴热处理工艺优化	31.7
高端锻件出自高端设备2.		27·1	MP—1磷化工艺在变速箱二轴上的应用…	34.7
自主创新——推动"中国制造"转型超越2	man and an array of the contract of the first of the firs	5人红海…29·1	炉外精炼法熔炼优质钢液的生产实践	23.9
发挥技术优势 满足高端装备关键零部件	国内模具钢的选用及发展	38·3	基于PLC的铸件退火炉控制系统 ········	26.9
高精尖需求2	5-1 汽车覆盖件冲压生产车间的规划与该	计 6.5	电加热网带炉与燃气加热网带炉的分析比	·较…28·9
控制关键技术 破解大型高端机床	机器人冲压自动化生产线的构成及技	₹特点…10·5	感应加热技术在锻造领域中的应用	30.9
铸件生产难题20	5.1 齿轮类零件的精密锻造	20.7	内热式真空-加压气体渗氮炉	32-9
解析高附加值模具的生产1		22:7	轿车等角速万向节典型零件淬火机床	26·11
汽车零件冷锻技术应用浅析[14-9	高强度厚大断面球墨铸铁花盘的铸造工艺设计	30-11
聚焦降低模具成本2		17:9	高速钢拉刀热处理缺陷成因及防止	32·11
# * ** ** ** **	熔炼技术对灰铸铁质量的影响	20-9	基于ANSYS多连杆压力机滑块锁紧	
技术论坛	促进转型升级 建设轴承强国	18-13	装置参数优化设计	34·11
模具真空淬火加热保温时间的选择1	5.3 风电紧固件热处理技术的现状与发展	{······· 20·13	薄壁油缸QXK63-10数控强力旋压机	
复合冷作模具钢的真空热处理	5.3 无芯感应电炉熔炼灰铸铁的		旋压工艺研究	36·11
冷挤压成型模具真空热处理工艺1	7-3 技术应用与发展(上)	26-15	机床钣金加工工艺浅析	38-11
气门银模的最佳真空热处理工艺1	3-3 齿轮的精密渗碳热处理控制技术	18-19	M2高速钢刃具焊接毛坯退火加热时间研究	40-11
深层渗碳工艺——缓冲渗碳	7-7 热处理连续炉工艺特点分析	21-19	77752G轴承贝氏体等温淬火冷却工艺 …	25·13

題 目 页·期	題 目 页·期	题 目	页·期
汽车水泵轴承断裂分析与解决方案 28-13	渗碳钢制圆锥滚子轴承外圈开裂失效分析47.5	件砂混合振动法去除零件表面"碳化层"…	52-15
轴承钢热处理逆淬现象分析 30·13	薄壁管壳切削加工的热处理工艺49.5	汽车空气压缩机轴渗碳工艺试验	37 17
灰铸铁自制轴承的生产技术控制要点 32·13	图像分析软件计算金属晶粒大小51.5	链条产品回火脆性问题	38·17
轴瓦合金层离心浇铸质量的数值模拟研究… 34:13	采用正火工艺改善热煨弯管性能52-5	65Mn弹性圆柱销径向脆断原因分析	
回火温度对20MnTiB钢履带高强度螺栓	越野车后桥主动锥齿轮轴螺纹断裂分析36.7	及改进措施	39·17
组织及性能的影响 37:13	叉车桥半轴工艺改进38-7	通轴类零件感应淬火机床	
步进式货叉热处理线的设计及应用 30·15	保证齿轮花键孔合格的各种方法39.7	对辊旋转驱动进给装置	40.17
节能改造热处理井式电阻炉 32:15	利用热应力收缩内孔超差零件42-7	液压操动机构阀缸热处理工艺改进	42.17
硅酸铝纤维在台车式电阻炉中的应用 33:15	链条原材料及热处理加工的检验和评定标准…43.7	花键轴类零件感应淬火工艺	44-17
锻造加热缺陷分析及工艺预防措施······· 34·15	采用低温短时淬火法提高CWMn模具使用寿命 …45·7	感应加热淬火感应器的设计原则	46.17
科润淬火冷却介质在汽车零部件行业的应用… 22-17	齿轮加工中对锻造及热处理的要求46.7	曲轴芯孔断裂的失效分析	47.17
汽车白车身中激光拼焊板的冲压工艺研究… 24:17	热处理工艺对17-4PH不锈钢冲击韧度的影响 …47·7	轴承套圈热处理锥度变形的探讨	49-17
雪佛莱曲轴离子氮化工艺 27:17	宽厚板轧机支承辊用巨型卧式差温炉33-9	浅谈汽车零部件热处理用淬火冷却介质	37-19
主动齿轮裂纹原因分析及改进措施 28:17	大型井式热处理燃气炉的节能改造35-9	改善航空用标准件14Cr17Ni2平头轴	
低压铸造汽车轮毂模具选材 31·17	燃气退火炉炉温异常分析37.9	剪切力的热处理工艺	39-19
应用CASTsoft CAD/CAE软件模拟	大型拉刀失效分析及改进措施38-9	感应加热在船用曲轴制造中的应用	
铸钢汽车桥缺陷分析与对策 ······ 33·17	浅谈盐浴炉的自激启动41.9	35CrMo钢管中频感应加热调质技术	43·19
大模数重载人字齿轮轴硝盐淬火工艺研究… 25:19	终传动齿轮中频淬火工艺改进42-9	钩体力学性能不合格原因分析及防止措施…	45-19
T型齿轮热处理工艺探讨 28·19	纯铜零件的热处理工艺44-9	改变装料方式有效减小从动弧齿锥齿轮变形…	47-19
链板热处理工艺探讨 30·19	Inconel625合金热处理工艺 ······45·9	带轮轴淬火开裂分析及预防措施	49-19
轴齿轮毛坯反挤压成形 33:19	板簧销轴正火工艺规程47-9	两垂直面同时加热感应淬火方法	33-21
大型合金钢齿轮的铸造工艺研究 34·19	FN-0205材料内花键齿环感应热处理工艺 ··· 42·11	圆柱零件表面感应加热感应器设计	
and the same state and LLL. IN	炮舰后座12Cr13支承套调质	三峡转轮热处理工艺改进	37-21
新工艺新技术	热处理工艺参数优化······· 46·11	淬火冷却介质在汽车零部件热处理中的	
激光熔覆技术及其应用(上) 39·13	ZG20SiMn铸件热处理工艺 ······ 48·11	应用及注意事项(上)	39-21
激光熔覆技术及其应用(下) 37-15	ZG35CrMo大齿轮粗开齿正火代替调质工艺··· 50·11	20CrMnMo小齿轮渗碳裂纹的产生及消除···	
新世纪材料成形加工技术的发展趋势 36-23	高速钢薄形刀具热处理工艺 52:11	亚温淬火在熔模精密铸件上的应用	43-21
热处理	17-7PH的热处理工艺 ······ 53·11	改善20CrMnMo材料金相组织 ·············	
大型构件整体热处理应用实例46·1	槽类零件感应淬火······· 41·13	分离轴承座断裂分析	
微量Cr元素对40Mn2轮体用钢淬透性的影响 ··· 48·1	电磁阀用软磁合金热处理工艺 43·13	淬火冷却介质在汽车零部件热处理中的	
球墨铸铁曲轴在生产过程中的腐蚀与防护50·1	感应淬火技术在风电增速齿轮箱	应用及注意事项(下)	39-23
博世ABS制动轴SOM-50S设备高频感应	内齿圈上的应用 ············· 44·13	金属带的感应加热	
淬火工艺试验 ·······54·1	薄壁钛合金材料零件旋压的热处理工艺 46-13	现代高频技术的三种发展模式	
振动时效设备的简易制造56-1	5A06板材钣金成形件退火工艺研究 47·13	精密轴承的真空热处理	
深冷处理对钎焊接头性能的影响与机理研究…57·1	如何降低轴承热处理变形不合格率 49·13	高速工具钢淬火过程中回火工艺的研究	
振动时效的合理应用43.3	圆盘剪失效分析	阿可技术在铸铁件表面处理上的应用	
****	连杆的喷丸强化工艺试验 52:13	門可以外任何以往我國及是王的歷州	30 23
Cr5系材料大型支承辊差温热处理	2A12铝合金固溶处理后残留应力的测试分析··· 53·13	锻压	
工艺参数的研究45-3	<u> 感应回火工艺研究</u> 40·15	SA-335P91钢管热弯制造技术	
20CrMnMo活塞失效分析 ····································	高耐磨锻钢冷轧工作辊 42:15	小U形铜管成形模具的设计 ······	
高性能高速钢刀具材料及热处理工艺49·3		氮气弹簧在冲压模具中的应用	
提升杆下连接叉断裂分析52·3	高频感应淬火工艺研究······· 44·15	C形件弯曲模的设计 ······	
AQ251淬火冷却介质的特点及使用·······54·3	5CrMnMo心轴热处理工艺研究 46·15	螺栓锻件的模具设计和制造	
热处理过程对渗碳阀座使用寿命的影响55.3	工艺参数对H13钢离子渗氮层性能的影响 ··· 47·15	轴承套圈锻造工艺过程数值模拟研究	57.3
齿轮的防渗技术及防渗涂料的清理方法41.5	曲轴离子渗氮工艺的改进 50-15	20000kN液压支架内加载整架试验台	
45钢轴类零件断裂分析及预防45.5	提高m10以上40Cr齿轮淬火硬度 51·15	液压系统的设计	59.3

題 目 页·期	題 目	页·期	題目	页·斯
拉深工件获得规则竖边的冲压工艺62:3	引脚气动折弯成形工装	58-19	浅谈企业如何正确应用振动时效技术	61.9
深拉深模具表面拉伤改善方法63-3	端盖拉深工艺与模具设计	59-19	改性环氧树脂模样制作的研究	65-11
成组理论组合锻模的实际应用64-3	货叉煨弯成形模的失效分析及改进措施	61-19	450t提梁机行走轮冒口工艺优化设计	··· 67·11
新型机械压力机滑块锁紧装置66-3	不锈钢小壳体内键槽成形工艺研究	63-19	生石灰消化器快换刮刀铸造工艺	69-11
马鞍形零件冲压工艺与成形模具设计54.5	新的设计理念促成热成形模具的		水电站转轮上冠的铸造	71-11
联接板零件切断弯曲复合模设计56-5	互换和重复使用	····· 48·21	轧钢机轴承座铸造工艺与生产控制	73-11
折弯孔边距离的Deform模拟研究59-5	大功率锻造感应加热系统的设计与应用	50:21	正时齿轮室砂型铸造金属模具的设计与制造	··· 75·11
厚钢板小孔冲裁力的研究61.5	曲轴锻造分模面处磁痕分析	····· 54·21	铸造用煤粉粒度的选择	67-13
大锻件超声波检测中草状波缺陷的	锻压机械安全风险管理的探讨	····· 57·21	改进型无限冷硬铸铁辊的离心铸造	68-13
形成及消除50-7	MAN V32/40系列柴油机曲轴		热分析仪在冲天炉熔炼过程中的应用	70·13
斯太尔曲轴结构改进的可行性52-7	TR镦锻工艺开发	59-21	转轮下环的铸造工艺研究	71-13
冲压圆形工件卸料装置的设计与应用54分	激光表面熔覆技术提高斯太尔曲轴		熔模铸件热裂纹缺陷的分析与实践	73·13
冲压组合工序对细小冲孔凸模的影响57-7	模具寿命的研究	····· 52·23	新型浇包烘烤器的开发与应用	76-13
大吨位龙门移动式压力机液压缸的改进设计…58-7	焊接转子轴头锻造研究	····· 54·23	一种有效生产铁素体球墨铸铁的方法	78-13
强力减薄旋压工艺在钢质无缝气瓶中的应用…60-7	涡轮盘锻造工艺模拟与改进	····· 57·23	水轮机下环铸造工艺优化	65-15
圆柱斜齿轮冷精锻成形工艺模拟研究63-7	冷锻工艺及辅助设计方法(上)	61-23	超重型离心套筒的生产	67-15
钣金工下料节约材料途径的探讨63-5	铸造		铜合金材料拔叉零件的压铸型改进技术…	70-15
汽车覆盖件框前板冲压工艺设计65.9	基于UG的铸造三维工艺模型快速放涂料	}	快速核算法配料在冲天炉中的应用	72·15
连续模在冲压生产中的应用67.5	补正量探索	69·1	三通管和三通管座的铸造工艺改进	73-15
超大型复杂环锻件的研制70-5			控制不锈钢铸件中铁素体含量的方法	75.15
冲裁类冲压模常见故障分析72.9	及质量改进	71·1	带轮铸铁件中气缩孔的分析与防止	61.17
人车弓形板弯曲模具的优化设计76-9	铸钢电炉盛钢桶塞棒组装工艺改进	76·1	如何防止机床铸件裂纹	63-17
13MnNiMoNbR钢板卷制过程	热侧冒口在中小型球墨铸铁件上的应用	77·1	勺头铸件的生产应用研究	65-17
中断裂分析研究 55.11	高纯生铁的应用与发展	68-3	卧车花盘的铸造工艺	
42CrMo延长杆锻后心部裂纹研究 57-11			轮毂铸件断裂原因分析	
精锻齿坯工艺在JC系列锻造压力机上的	高铬铸铁后衬板铸造工艺的优化设计…	73.3	薄壁高铬铸铁管件铸造工艺研究	
生产应用 60-11			无芯感应电炉熔炼灰铸铁的技术	
柳元管冲压工艺及模具设计 62-11			应用与发展 (下)	75-17
钢质无缝气瓶强力减薄旋压工装模具设计… 56:13			感应熔炼在铸造生产中的应用	
12Cr2Mo1管板锻件制造工艺研究 59·13			基于模拟技术的结构与工艺协同设计研究	
42CrMoL钢环锻件形变过烧的研究 62·13			应用挂砂冷铁生产M2210磨床桥板铸件…	
TC1钛合金端板成形工艺及拉深模具设计 ··· 64·13			铸件热裂缺陷的成因及防止措施	
橡胶冲模在设计中需注意的几个问题 54-15			进气歧管铸造工艺改进	
冷锻成形工艺概要 (上) 56-15			铸件热裂缺陷及其数值模拟预测的方法…	
夹层式热风管灌锡填充成形工艺 60-15			用废钢加增碳剂生产球墨铸铁	
新型板料翻转机构 61-15			提高冲天炉热风炉胆使用寿命和	
大型饼类锻件锻造工艺方案的研制 63-15			热效率的途径	66.21
冷锻成形工艺概要 (下) 50-17			潜水泵叶轮芯盒的制作工艺	
A50电动机轴锻件制造工艺技术 ······· 53·17			球磨机瓦体铸造工艺的优化	
程控锻锤与一模多件锻造成形 56-17			支架结构优化设计及铸件开发	
06Cr13Ni4Mo不锈钢转轮的研制 ······· 59·17			叉车驱动桥壳铸造工艺的研究	
钣金冲裁面与剪切切断面的选择 50-15			喂线法与热分析相结合的蠕墨铸铁工艺…	
30MW护环的制造工艺研究 ····· 52-19	.,		冒口位置对铸钢件质量的影响	
6000kN热模锻压力机模架结构设计 54·19	·· · · · · · · -		树脂砂生产大型铸件无砂箱浇注工艺实践	
传动轴的锻造工艺要点 56-19			贝氏体耐磨铸钢强韧性的试验研究	
以外相时似是工石女品 30.15	输坐时环末曲机 八叫净的生厂工乙	79'9	火八平顺屠研州黑彻住时风湿妍光	00.73

鹽 目	页·期	题 目	页·期	題 目 页期
机床附件卡盘的消失模铸造技术	· 70·23	高效焊接是未来发展趋势	10-12	俏也不争春 依然把春报
高硅碳比铸铁在潜水泵铸件上的应用	·· 73·23	未来工程机械稳中求进 焊接自动化应用	目前景无限	——第26届中国焊接博览会近期动态3·16
新型沸腾炉用风帽的研制	·· 74·23	——访中国工程机械工业协会		用论文大赛形式 为年会注人新的活力
简易模板造型生产实践	·· 75·23	副秘书长王金星	11-12	——记中国安装协会焊接专业委员会
铸钢件微裂纹的形成与预防	·· 77·23	走进企业		2012年年会论文大赛3-18
焊接与切割专刊		传承五特精神 创建西部"大庆"		中国安装协会焊接专业委员会
		——记金属加工杂志社走进"长庆油	⊞"	2012年年会论文大赛获奖名单418
新年寄语		技术交流会		"熔盛杯"焊工决赛圆满落幕
焊接同仁话新年	2.2	De l'Outre		——记第四届全国职工职业技能大赛 ······5·18
展会报道		企业风采		2012年度全国优秀焊接工程一等奖
第十七届北京·埃森焊接与切割展览会顺利闭幕	基···7·12	焊动未来 尽在库卡		(钢结构部分) ······ 11·18
镜头下的埃森展		KUKA为中国市场量身打造		新起点新征途
观焊接盛会 品产品亮点		高性价比新品	13·12	记新盛(泰州)磨料磨具新材料科
2012'中国·机器人焊接应用推广会		机器人的舞台 视觉的饕餮盛宴		技园开园暨姜堰苏蒙砂轮有限公司
取得圆满成功	9.14	——现代机器人闪亮登场 "2012 ESSEN展"		自动化生产线竣工投产典礼3-20
		FANUC高性能R—0/A机器人全球首发 …		协会携手专业媒体 共促行业技术进步
展会透视		伊萨关注客户行业 精彩亮相埃森盛会…		记中国安装协会焊接专业委员会
数字焊机网络化 引领时代		华巍电气精彩亮相北京·埃森焊接展	···· 22·14	2012年年会系列活动
除尘治理新技术 任重道远		焊动未来 尽在库卡		回眸焊接学术半世纪 技术交流促发展
——观第十七届北京·埃森焊接与		——KUKA MyArc孤焊包发布会		一一记中国机械工程学会焊接学会
切割展览会有感	· 25-14	媒体见面会	23·14	第十七次全国焊接学术会议暨学会
共享焊接盛宴 同促行业发展		特别报道		成立五十周年纪念大会4-22
——浅谈第十七届北京·埃森焊接与		瑞凌股份公司参与2011年焊接之桥		机器人焊接会议成功举办
切割展览会	· 27·14	——中国焊接高峰会(珠海)纪实 …	21-2	——记2012年中国机器人焊接学术
浅谈十七届北京 埃森焊接与切割展览会		直面挑战 蓄势崛起		与技术交流会议6.22
三项设备(技术)	· 28·14	——记无锡汉神2011~2012年度经销商年	会 …22·2	"天衣无缝" 从德国制造走向全球市场
焊接机器人的盛宴	· 30·14	中国技能走向世界		德国施坦恩金属线材公司一行拜
对开发一些专用焊机的意见	· 32·14	——第41届世界技能大赛总结表彰会		访金属加工杂志社纪实 ····································
最新焊割技术的实操室 前沿焊割理论的大	计坛	暨2011年全国职业技能竞赛系列活动的	闭	德国品质助力中国······8·22
——记第十七届北京·埃森焊接与		幕式在广州举行	6.6	中国焊接行业发展高端论坛顺利召开 8.24
切割展览会的一点体会	· 34·14	观众云集展会 尽显行业盛况		本刊专访
行业动态		——2012慕尼黑上海光博会顺利闭幕	21.8	Optrel防护为绿色焊接护航
2012'中国焊接产业论坛(一号通知)		瑞凌股份工业焊机及自动化装备招商会召	3.7 22·8	——访北京罗创科技有限公司Optrel焊接防护
一件接机器人	···· 4·6	烟花四月下昆山 高效焊接话发展		事业部市场经理徐华20.2
2012'中国·机器人焊接应用技术推广会		——2012年中国船舶工业高效焊接技	术	做国产精品,创民族品牌
(一号通知)	5.6	指导组工作会议暨现代船舶焊接技术		——访昆山海大数控技术有限公司
2012'中国焊接产业论坛(二号通知)		研讨会成功举办	·····4·10	总经理彭湖20.6
	3.8	金属加工杂志社与中国安装协会		引领焊接技术革命 承载产业升级梦想
2012'中国·机器人焊接应用推广会		焊接专业委员会携手展开全面合作 …		——访宏孚瑞达科技有限公司
(二号通知)	4-8	求真务实 努力开创职工焊协工作新局面	Ī	副总经理罗建坤
中国焊接协会焊接设备分会、成套设备与		——记中国职工焊接技术协会		十年磨砺 吹尽狂沙始到金
专用机具分会六届四次专委会顺利召开	···2·10	六届一次会员代表大会	·····4·12	——访成都焊研科技有限责任公司
<= d1, 4a ±=		继往开来 开创维克多(中国)新纪元	nd.	董事长杨光 14·10
行业视点		——记维克多科技(中国)演示、培i		强强联姻聚优势 续写伊萨新篇章
中国船舶工业形势严峻		暨办公中心开幕仪式	3-14	——访伊萨公司全球副总裁Ken Konopa先生

题 目 页·其	阴 题目 页·	朝 題目 页·期
和伊萨中国市场总监罗莎莉女士 10-1-	专家视点	多功能智能机器人系统在汽车零部件
持续领先地位 不断创新发展	汽车行业焊接技术现状及需求(上)24	2 焊接线上的应用 23·10
——访ABB机器人与应用汽车行业销售	汽车行业焊接技术现状及需求(下) 4	4 并联五轴联动技术在搅拌摩擦焊接
经理徐斌和ABB机器人与应用弧焊应用	现代切割技术的发展与运用10	2D. 女工研究と中田 25-10
中心副经理王华东 ······ 12·1-	4 船用焊接材料研究现状及进展······17·	8 电力装备焊接自动化······ 23·12
发挥国际化优势 服务中国市场	海洋工程产品国产焊材的应用及焊接研究19	取化发生上扩张之体之地 / 1/
——访北京米勒电气制造有限公司	核电大型构件关键焊接技术 18·1	
总经理闻学亚 ····· 14·1	4 激光自动化切割设备的技术特点	工性が放
焊接保护气 不容忽视的5%成本投入	及应用前景(上)8-1	8 TIG焊接1Cr13马氏体不锈钢
——访空气产品公司全球商用气体焊接	钛及钛合金结构焊接技术研究进展 11-2	★刑箱休本形的控制26.2
和金属加工行业总监Craig Hunt先生 ··· 16·1·		传统火焰切割技术在机加工领域的推广应用…28-2
爱科曼: 数控切割方案解决专家	及应用前景(下) 14-2	20 欧标焊接工艺评定的方法30-2
——访爱科曼工业自动化技术(北京)		搅拌筒导轨焊缝开裂分析及改进34-2
有限公司董事长罗兰特·西蒙 ······· 18·1	4 新产品新技术	机器人焊接中出现气孔的排查方法及解决措施37.4
云南奥云 源远流长的焊材行业"黑马"	等离子电源:空气/多种气体组合等离子	自动化设备在结构件备料与焊接领域的应用…40.4
——访云南奥云焊材科技有限公司	精密切割解决方案22	6 盾构刀具的加工工艺研究41-4
董事长蒋才银 20-1	4 大厚度不锈钢和铝的等离子水下	俄罗斯连铸框架弯曲段结构改进44-4
搭建焊接沟通平台 更好地为行业服务	水射流切割技术23	·6 环保型水中切割45.4
——访成都电焊机研究所所长尹显华4·1	6 激光切割加工整流器内外环叶形孔的工艺25	·6 2530钢焊接工艺评定······46·4
让焊接烟尘不再成为危害	HF610型焊接气瓶双环缝数控	NM360高强耐磨钢板焊接工艺探讨 ·····29·6
——访凯天环保科技股份有限公司	埋弧焊专机的设计24	·8 连铸机扇形框架再制造中的冷却水管密封焊接…30.6
董事长叶明强 14:1	6 焊接电源与专机系统的数字通信 22:	16 奥氏体不锈钢的焊接工艺33.6
FANUC: 实力源于创新	应用于"天宫一号"简体焊接的	转向辊焊接裂纹分析及焊接工艺30.8
——访上海发那科机器人有限公司机器人	高精密焊接装备(上) 25	16 点固焊缝的质量控制32.8
一般产业销售部焊接切割科科长沈晔君 … 16·1	6 高智能数字化氩弧焊机的新水平(上)	Hardox400粒化槽筒体的制造33.8
随势而动 创新改形世界	——德国雷姆(REHM)公司INVERTIG·	YT32-500D油压机导向柱的焊接修复 ······35·8
访美国维克多科技集团	PRO digital系列氩弧焊机············ 29·	16 Q690E焊接工艺的研究 ······ 27-10
首席执行官Martin Quinn、	应用于"天宫一号"简体焊接的	基于有限元分析法的焊接夹具设计 28-10
中国区总经理周国威······· 18·1	6 高精密焊接装备 (下) 20-	18 不同热处理工艺对奥氏体不锈钢焊接
追求卓越 用品质铸就发展	- 高智能数字化氩弧焊机的新水平(中)	接头耐蚀性影响的探讨 31-10
	——德国雷姆(REHM)公司InvertigPro digital	回转窑托轮缺陷焊接修复及工艺探讨 32:10
出口部经理毛里奇奥·白茨 20-1	6 系列氩弧焊机22.	18 干熄焦工程鼓风装置的研制 33-12
从优秀到卓越 参与全球竞争	ECKELMAN:	焊接机器人与变位机的选择要领 35-12
访深圳市佳士科技股份有限公司	德国最先进的激光加工应用解决者 20%	20 18Cr2Ni4WA与Q345B的焊接 37·12
总裁助理兼国内营销总监吴峪6·1	8 高智能数字化氩弧焊机的新水平(下)	基于薄板折弯件的焊接工装设计 47-14
精细等离子切割之锐器		浅析H型钢的焊接变形及其控制和矫正方法… 49·14
——访ITT Kalibum全球总经理Ken Skiles、	Invertig Pro digital 系列氩弧焊机 ····· 23:	20 WK-35挖掘机铲斗提梁改进 32·16
亚太区经理蔡连家和全球销售	数控激光(等离子)高速冲切复合加工 13%	22 推土机松土器支角焊接修复 34-16
总监Mark M·Osowski ············ 17-2	n	宝钢690MPa钢管焊接工艺 36-16
焊研科技以产学研结合助推中国航天事业发展	. ¹⁰	
——访"VPPAW变极性等离子焊接系统"	关注现代切割设备核心部件13	
——· 切 VPFAW 受攸性 等离 丁坪 接 系 统 项目组组 长 庄 严 · · · · · · · · · · · · · · · · · ·		
	聚焦焊接自动化····································	
转型升级 打造未来切割之星	ABB先进焊接技术在波纹腹板H型钢生产中	工件内外圆坡口 30-13
——访天津市华利兴精密机械有限公司 董事长陈洪涛 ·······10·2		
里争大陈决府	.Z RULLUM ZI	10 97日四平四年9月8日1日沙女工石田9月7日7年月 36年

题 目	页·期	题目	页·期	題 目 页·期
铸造起重机龙门钩小吊耳结构优化	34.18	储罐立缝焊接柱状气孔及横向		氢氧火焰切割工艺在锦屏二级水电站压力
φ 10.22m 盾构机刀盘制作工艺中的		裂纹缺陷的分析与防治	··· 38·12	钢管制造中的应用 44-22
重点技术分析	37-20	Cr9Mo炉管焊接工艺分析 ······	··· 41·12	12Cr1MoVG耐热钢管道焊接工艺研究 47:22
大型棱锥轴加工技术应用	39·20	压缩机缓冲罐插人式接管焊缝的焊接	··· 43·12	汽车与轨道交通
国内自动化焊接设备在中厚板领域中的		管道焊接接头内表面喷焊防腐技术	··· 45·12	
发展及应用	15-22	超级双相钢复合板的焊接及质量控制	35·14	不锈钢箱体的设计与制造46.2
等离子切割机在中厚板切割中的应用研究…	19-22	浅谈消除管道磁性的方法	38·14	高速列车车下薄壁电气控制箱焊接变形的控制 …48·2
高效切割设备在工程机械中厚板切割中的应用 …	23-22	小容积钢瓶制造中的环焊工艺	··· 41·14	CRH380BL型高速动车组
矿用高端液压支架结构件焊接未熔合缺陷的		蒸发器用H62铜锌合金的焊接 ······	··· 44·14	司机室模块化组焊工艺50-2
分析及预防	25.22	浅谈P91材质高压蒸汽管道的焊接	··· 45·14	机车构架拉杆座脚定位焊接工装的改进51.6
结构件焊接车间通风除尘技术及选择	27.22	加药罐车管路改造的焊接工艺	39·16	中頻直流伺服焊接技术在车身制造中的应用…53.6
狭形深腔体气体保护焊焊接	31.22	煤制氢圆式气化炉内		轨道车辆端墙柔性化工艺装备的分析56.6
球磨机45钢大齿轮的焊接	32.24	水冷壁盘管焊接返修工艺	··· 41·16	钢轨闪光焊接工艺研究······ 44·10
无线网络传输系统在铆焊车间		国内外长输管道焊接标准对焊接工艺		铝合金焊接厂房排烟除尘除湿技术研究 47:10
信息管理中的应用	34.24	评定分析初探	36·18	铁路货车焊接的全面质量管理 47-12
辊盘式磨煤机焊接工艺的改进	36.24	板状对接仰焊时气孔的产生及预防	··· 41·18	CMT先进焊接工艺特点及应用 49·12
液压式罐体焊接翻转机的设计与应用	37-24	机械式复合管焊接试验及应用	··· 44·18	车身钣金异响的控制······ 51·12
		钢制管道冬季施工焊接质量控制措施	41.20	轨道车辆不锈钢车体变形分析及解决措施… 53·12
石油石化		浅谈数控火焰切割变形及解决办法	··· 44·20	高速动车组车体焊缝打磨方法研究 56-12
铜镍合金换热器材料及其焊接工艺	35.2	带磁性15CrMo钢管的焊接工艺	··· 46·20	提速转向架支撑座焊接机器人
焊接试件X射线检测数字成像系统的		Q345厚壁小口径管道现场焊接试验研究	33-22	专用工艺装备的设计要点 58·14
研究与应用	39.2	06Ni9钢中薄板焊条电弧焊焊接		逆变器柜体螺柱焊工艺试验研究 60·14
石油石化装备焊接自动化应用现状与发展趋势。	8.4	工艺试验研究与应用	37-22	铝合金车体用6005A-T6焊接气孔的防止… 62·14
西气东输二线X80管线钢焊接应用技术	12.4	薄壁管全自动TIG焊接工艺研究		B型碳素结构钢环卫车箱的结构与工艺改进… 60·16
φ80mm×5mm小口径铝镁合金		锆702管的焊接工艺	29-24	辊锻模具堆焊修复技术 62:16
管道TIG焊接要点	15.4	在用丙烷球罐应力腐蚀裂纹分析与修复…		冲压模具凹模焊接工艺的研究······ 64·16
海洋工程复合立管环缝焊接工艺研究	···18·4			粉冶齿环与钢制齿轮激光
石脑油蒸发器异种钢及Ni基合金焊接技术探讨·	23.4	电力建设		焊接工艺研究与应用 54:20
超低氢高强度高韧性焊条的研制及应用		WDB620D高强钢钢岔管焊接技术	41.2	地铁车辆侧墙门角的二次修补焊接试验 58:20
套管头悬挂器镍基合金芯轴的焊接修复	30.4	快堆工程之堆顶固定屏蔽支撑环焊接工艺研究	究…44.2	GZML3E项目司机室保护罩的焊接工艺 51-22
油气长输管线焊接裂纹的返修工艺		焊接结构风力发电机底座母材选用	·····44·6	B型铝合金地铁底架制造工艺 ······ 54·22
钛复合板管板焊接工艺的探讨	35.4	水电转轮室的组装焊接技术	·····47·6	白车身焊装生产线效率提升方法研究 57-22
A537CLImod低温钢球罐焊接裂纹的控制措施·		变压器油箱低磁钢板焊缝的检验	50·6	铝合金车体车钩梁焊缝链状
大口径管道焊缝返修操作技术		点焊机三维可调操作台	·· 40·10	气孔分析与控制 47-24
20MnMoNb钢的焊接工艺试验······	40∙6	660MW低压加热器制造工艺技术	·· 41·10	激光焊接在汽车变速箱齿轮中的应用 49.24
浅谈升降温速度		外配水环焊接变形的分析与过程控制	·· 51·14	钢结构
对N-TUF490钢低温冲击性能的影响 …	42.6	AP1000汽轮机特殊静叶隔板汽封槽		天堂遗址箱形钢桁架主弦杆焊缝返修工艺研究48·4
镍基合金换热管与管板的焊接	36.8	堆焊缺陷问题的探讨	·· 53·14	大型标梁变截面U型钢索塔制作工艺设计 ·····52·4
12Cr5Mo管道的焊接······	38.8	厚壁弓形铝导体焊接变形的控制方法	·· 55·14	
15CrMoR/06Cr13复合板塔产生表面裂纹的		P91/P92钢管焊接接头表面裂纹		超高层钢结构工程典型构件
原因分析	··40·8	磁粉检测工艺探讨	·· 47·18	制作焊接技术(上)
热高压分离器的带极电渣堆焊技术	42.8	水电设备定子机座焊接变形的分析与控制·	·· 49·18	Q420D-Z15厚板箱形构件焊接技术(上) …50·8
机油过滤器网筒的焊接工艺	45.8	超低碳不锈钢管TB316L		超高层钢结构工程典型构件
Q345R与双相不锈钢022Cr22Ni5MoN		与管板Q345管口焊工艺评定 ··········	·· 51·18	制作焊接技术(下) 50·10
复合板的焊接	34·10	反应堆压力容器贯穿件管座焊接技术		Q420D—Z15厚板箱形构件焊接技术(下) ··· 54·10
手工钨极氩弧焊自动送丝装置研制及应用研究 …	37·10	及工艺优化	·· 41·22	钢结构多层多道错位焊接技术研究 51-16

题 目 页·期	题 目 页·期	题 目 页·期
厚板焊接工艺及焊后热处理研究 55-16	机座装焊精度控制······52·24	45钢链轮与20CrMnTi套的焊接 ······69·2
铁路不锈钢复合桥面焊接工艺研究 57-16	大厚壁锻件与钢板的焊接工艺 54:24	轴流风机外壳焊接工艺的改进71.2
大型游泳馆V形圆管柱转换节点制作工艺 ··· 12·18	研究与应用	Q345钢与钢轨焊接工艺
嘉绍大桥钢箱梁与钢锚箱		在矿仓眉线改造上的应用63.4
焊接技术研究(上) 15:18	喷嘴壳体组件的钎焊工艺研究······53·2	热轧宽厚板轮盘式冷床托辊支架的焊接工艺…66.4
钢梁"十字"接头焊缝焊接技术研究 18:18	工艺方法欲改进,焊接材料需出新(下)	剪板机压料板裂纹的焊接修复68.4
嘉绍大桥钢箱梁与钢锚箱	——T91/P91钢焊接材料应用评述········56·2	焊条电弧焊触电原因分析及其防止措施70.4
焊接技术研究(下) 67-20	35CrMo异形拐臂的焊接工艺 ······55·4	钨极氩弧焊在换热管与管板焊接中的应用69-6
管道焊接移动工作站在安装行业的应用 40-24	数控火焰切割机制造链轮的探讨57-4	中碳钢超厚壁缸体的焊接70-6
建筑钢结构箱型梁/柱CO2气体保护	基于AutoCAD的数控切割共边排料 ·········58·4	一种断轴和废轴的修复方法65.8
自动焊接技术45-24	关于热锻模堆焊条的思考与配方改进设计61·4	18CrMnMoB与Q345D的焊接 ······66·8
压力容器制造	纯铜埋弧焊的工艺分析·······65·6	高破片用钢氩弧焊接常见缺陷及控制67.8
	FCB法焊接在我国船舶领域的应用 ······6	截齿的钎焊工艺69-8
600MW高中压外缸缺陷补焊工艺 ······59-6	雷达大型构件自动化焊接生产线的研制58·8	火焰筒定位块焊后掉块故障分析与排除71-8
印度锅炉制造的焊接特点61-6	新型管道多功能焊机的研制61.8	结晶器中铜与碳钢的焊接修复工艺 66·10
16MnDR厚钢板焊接裂纹的分析与处理 ·······63-6	铜质水冷块的焊接修复工艺研究63.8	高频感应钎焊在纯铜接头和
厚壁奥氏体不锈钢高压容器焊接研究 57-12	工程应用获好评,焊材工艺显其能(上)	304不锈钢管焊接上的应用 68:10
中小型液化天然气运输船储罐的制造与检验… 59-12	——双相不锈钢焊接材料应用综述 ····· 57·10	DBT5.5m顶梁修复方案及实施措施 70·10
12Cr1MoVG厚壁珠光体耐热钢管的焊接 … 53·18	关注焊工的职业健康 60·10	曲轴带轮键槽的焊补修复 70-12
Cr25Ni20耐热不锈钢的焊接工艺 56·18	新型镍基焊条CHNiCrMo—3的研制 ······ 63·10	阀杆与方头处断裂原因及处理 71·12
废热锅炉制造工艺58·18	工程应用获好评,焊材工艺显其能(下)	空气等离子弧切割的质量提高及环境保护… 70·14
小型压力储罐制造工艺优化设计 60-18	——双相不锈钢焊接材料应用综述 62:12	硫磷含量偏高的不锈钢管头焊接裂纹的
一吸外冷器管板焊接变形的原因分析及处理 … 48-20	SPA2033全焊接振动给料机工艺探讨 65·12	分析及解决 70-16
生物质锅炉通道后壁制造工艺50-20	空气等离子切割与焊接在链轮制造中的应用… 68-12	提高管件火焰切割精度······ 71·16
冷凝器OCr18Ni9换热管与Q345R管板的	CO ₂ 焊用无镀铜实芯焊丝的工艺性能研究 ··· 65·14	用天然气预热炉预热对焊接效果的影响 66·18
焊接工艺 52-20	整体除尘除湿空调系统小制冷量除湿	厚大纯铜汇流排的焊接 68·18
百万千瓦级核岛主设备蒸汽	技术的研究 ····· 67·14	采煤机导向滑靴耐磨性能工艺改进 69·18
发生器焊接制造技术(上) 16:24	Q550D钢板的焊接性分析与研究 65·16	铸铁件焊接修复工艺探索 71·18
熔炼焊剂与烧结焊剂之比较 20-24	自制垂直固定管钨极氩弧焊半自动装置 68:16	浅淡不锈钢高频焊接 70·20
双面氩弧焊在焊接不锈钢中的应用 21-24	焊接眼面部防护具的选择与应用 61:18	火焰钎焊在刀具修复中的应用 71.20
中厚度集箱对接的焊接工艺改进 23-24	钢板数控切割下料的应用趋势 64·18	ZG40CrNiMo托轮表面铸造缺陷焊接修复 ··· 63·22
甲醇分厂低变炉出口弯头修复工艺 25:24	国产焊接材料在SA387 Gr11 CL2钢上的	加氢高压空冷器管板与管子焊接焊缝
船舶制造	焊接工艺研究 60.20	开裂原因分析 ························· 65·22
连铸机扇形段堆焊辊的制造工艺分析53.8	手工钨极氩弧焊在链轮固定轴制造中的应用… 63-20	燃气加热炉U形燃气辐射管防止
	某航机排气机匣焊接工艺研究 64:20	焊缝开裂的方法
浅淡EH36船板堆焊Inconel625 ············55·8	42CrMo驱动辊埋弧堆焊工艺研究 60·22	3t模锻锤座修复方案及焊接工艺 ······· 69-22
大型集装箱船超厚板立对接焊接工艺 44·16	低合金高强钢EQ69焊接工艺研究 62:22	某型号燃气一导尾缘间隙超差的解决方案··· 59·24
张力减径在无缝药芯焊丝制造中的应用研究… 46·16	高压涡轮双联导向叶片真空钎焊技术 56:24	PL—1200立轴式砂石粉碎机的
气电立焊液体冷却铜滑块工艺及装备研究… 48·16	现场解决方案	製缝焊接处理新工艺····································
海洋工程高效制管四丝埋弧焊工艺研究 26-20		
管子自动加工生产线及其在船舶管系制造中的	热旋压收口机箱体轴承孔的电刷镀修复59-2	精细化管理大幅提升磨煤辊(盘) 堆焊焊丝熔敷率
应用	数控火焰切割编程技巧62:2	压杆杆丝陷粮竿····································
在船舶焊接中减小焊接变形的措施 35-20	炉底结构及接头形式对焊接质量的影响64·2	
三峡地下水轮发电机首台定子	电厂大厚度钢结构焊割技术······65·2	