航天器密封舱体的激光-电弧复合焊接可靠性分析

Reliability Analysis of Laser-Arc Hybrid Welding for Spacecraft Sealed Cabinets

  • 摘要:   本研究针对航天器密封舱体严苛的工况要求,采用激光-电弧复合焊接技术(LB-HW),通过多尺度研究方法系统提升焊接可靠性。在工艺优化层面,基于COMSOL多物理场耦合仿真,首次量化了激光-电弧交互作用对304L不锈钢熔池流态的影响规律:当激光功率(3.5±0.2kW)与电弧电流(180±5A)产生等离子体协同效应时,匙孔稳定性提升40%,由此获得的焊缝截面深宽比达3: 1,X射线检测显示气孔缺陷仅0.18%(ASTM E390标准)。可靠性评估创新性地融合响应面法与蒙特卡洛模拟,构建包含热影响区硬度梯度、残余应力分布等七变量的极限状态函数。实验数据表明,经超声冲击处理的接头其疲劳寿命提升至2.1×10^6次循环(应力比R=0.1),可靠度指标β=4.32对应的失效概率较传统TIG焊接降低两个数量级。值得注意的是,数字图像相关(DIC)技术验证了焊接变形量(0.15mm/m)与有限元预测误差<5%。
      当前技术瓶颈在于空间辐照环境下的组织稳定性,未来拟通过原位透射电镜(TEM)观测氢致裂纹扩展行为,结合贝叶斯更新算法动态优化工艺窗口。本研究为新一代空间站舱体制造提供了经实验验证的可靠性提升方案。

     

    Abstract: This study addresses the stringent operational requirements of spacecraft sealed cabinets by employing laser-arc hybrid welding (LB-HW) technology and adopting a multi-scale research approach to systematically enhance welding reliability. In terms of process optimization, COMSOL multiphysics coupling simulations were used to quantitatively analyze the influence of laser-arc interaction on the molten pool flow dynamics of 304L stainless steel for the first time. When the laser power (3.5±0.2 kW) and arc current (180±5 A) generate plasma synergy, keyhole stability improves by 40%, resulting in a weld cross-section depth-to-width ratio of 3:1. X-ray inspection revealed porosity defects of only 0.18% (ASTM E390 standard).
    Reliability assessment innovatively integrates response surface methodology and Monte Carlo simulation to construct a limit state function incorporating seven variables, including heat-affected zone hardness gradient and residual stress distribution. Experimental data demonstrate that joints subjected to ultrasonic impact treatment achieve a fatigue life of 2.1×10 cycles (stress ratio R=0.1), with a reliability index β=4.32, corresponding to a failure probability two orders of magnitude lower than conventional TIG welding34. Notably, digital image correlation (DIC) technology verified that welding deformation (0.15 mm/m) deviates by less than 5% from finite element predictions5.
    The current technical bottleneck lies in microstructural stability under space radiation environments. Future research will employ in-situ transmission electron microscopy (TEM) to observe hydrogen-induced crack propagation behavior, combined with Bayesian update algorithms for dynamic optimization of process windows. This study provides an experimentally validated reliability enhancement solution for next-generation space station cabinet manufacturing.

     

/

返回文章
返回