激光增材制备Bi-SiNW-MgSi材料及其AI-BP模型的研究

Figure 5: Laser additive preparation of Bi SiNW-Mg2Si alloy

  • 摘要: 针对传统制备技术在 Bi-SiNW-Mg₂Si 复合热电材料中存在的高精度成型难、SiNW 团聚及 Bi 偏聚等缺陷,提出融合四波长激光能量协同耦合、数控精准喷粉与六轴并联扫描平台的激光增材制造新工艺,突破了传统工艺调控精度低、适配性差的局限。为提升可控性,构建了 AI-BP 神经网络模型,基于实测数据集训练优化,实现对 SiNW 掺杂浓度、Bi 掺杂比例及晶体取向的实时精准调控,有效抑制了 SiNW 团聚与 Bi 偏聚,保障了材料的理想结晶形态与均匀微观结构。实验结果表明,该材料的热电优值(ZT 值)达 1.36,较传统方法提升 23.6%,为其工程化应用提供了技术支撑与理论参考。

     

    Abstract: To address the shortcomings of traditional preparation techniques in Bi-SiNW-Mg₂Si composite thermoelectric materials, such as difficulties in high-precision forming, SiNW agglomeration, and Bi segregation, a novel laser additive manufacturing process was proposed, integrating four-wavelength laser energy synergistic coupling, CNC precision powder feeding, and a six-axis parallel scanning platform. This breakthrough overcomes the limitations of low control precision and poor adaptability in conventional processes. To enhance controllability, an AI-BP neural network model was constructed and optimized through training on measured datasets, enabling real-time precise regulation of SiNW doping concentration, Bi doping ratio, and crystal orientation. This effectively suppresses SiNW agglomeration and Bi segregation, ensuring the material's ideal crystalline morphology and uniform microstructure. Experimental results demonstrate that the thermoelectric figure of merit (ZT value) of this material reaches 1.36, a 23.6% improvement over traditional methods, providing technical support and theoretical reference for its engineering applications.

     

/

返回文章
返回